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Abstract—This paper demonstrates infrastructure-free or-
bital Simultaneous Localization and Mapping (SLAM). Indi-
vidual surface landmarks are tracked through images taken in
orbit and the filter receives measurements of these landmarks
in the form of bearing angles. The filter then updates the
spacecraft’s position and velocity as well as landmark locations,
thus building a map of the orbited body. In contrast to
other approaches that use an IMU, which doesn’t work in
orbit, to resolve scale, the contribution of this paper is to
demonstrate that scale can be resolved using orbital dynamics.
Radio localization can be replaced with onboard localization,
enabling truly autonomous missions to both under-mapped and
unmapped planetary bodies.

Overall system convergence is shown by simulating land-
mark detection from an orbit of the Clementine Mission on a
Moon model constructed using Lunar Reconnaissance Orbiter
(LRO) digital elevation data in conjunction with the filter.
The techniques developed in this work demonstrate that when
combined with a gravity model, visual SLAM converges to a
full scale solution.
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bearing angles

I. INTRODUCTION

This paper presents an approach to visual simultaneous
localization and mapping (SLAM) for spacecraft in orbit
around a planetary body or asteroid. The approach specifi-
cally takes advantage of the knowledge of the gravity vector
to determine scale. Landmarks on the orbited body are
tracked in a sequence of camera images. Measurements
are received by the spacecraft filter in the form of bearing
angles. These measurements combined with knowledge of
orbital mechanics are used to update spacecraft position and
velocity as well as landmark position.

Traditional SLAM approaches for ground vehicles and
UAVs have used inertial data to resolve for scale [1]–[4],
or initialized their models with a landmark of known size.
Because orbiting spacecraft are in freefall, IMUs do not
produce useful measurements of acceleration. For missions
to unmapped destinations, like asteroids, it is desirable
to produce measurements without prior knowledge of the
orbited body’s geometry.

In space, the state-of-practice is to use radio-based nav-
igation. Radio produces measurements accurate to a few

kilometers [5], but exhibits unacceptable latency at long
range and relies on interaction with Earth. High latency
is a challenge for highly precise operations near distant
targets (i.e., asteroids and comets). Reliance on terrestrial
infrastructure has significant detrimental effects on accuracy
of scientific data when Earth is not in view. For example,
because moon-orbit satellites rely on radio from Earth for
localization in the process of modeling the moon’s gravity,
the gravity model of the far side of the moon is noticeably
less accurate than that of the near side.

Our Monte Carlo simulation results show filter conver-
gence of both spacecraft and landmark states. By incorpo-
rating a rough model of gravity in the filter process, scale
is explicitly resolved.

Since no prior reference map is necessary, orbital SLAM
enables true infrastructure-free spacecraft autonomy. It fa-
cilitates travel to unmapped bodies including asteroids and
planets and improves low altitude flight, including landing,
fly-by missions, and sample return, where maps at the
necessary resolution do not exist. Furthermore, since a
map is continuously being built and updated throughout
navigation, orbital SLAM facilitates rapid modeling to scale
and increases localization precision.

II. RELATED WORK

In deep space, camera-based navigation measures angles
to distant asteroids to triangulate location [6]–[8]. These ob-
servations rely on the asteroid appearance as a single pixel in
an imager, reducing measurements to discriminating a point
source from black background. Objects that appear larger
than a few pixels introduce significant angular error. The
Voyager missions used optical measurements with radio to
Earth for navigation. Images of the planet’s natural satellites
against a starry background were used with knowledge of
ephemerides to update a navigation filter run on Earth [6],
[9].

Terrain-relative planetary orbit determination has demon-
strated success in simulation [6]. This approach to visual
navigation matches terrain appearance to pre-existing surface
imagery and uses orbital dynamics to determine spacecraft
position, velocity, and trajectory orbital parameters. Though



successful in simulation, this method is achieved as a batch
process and assumes an accurate existing map of the orbited
body.

Additionally, SLAM has been studied for years as its
own problem, beginning with Smith, Self, and Cheeseman’s
1990 text [10]. Sebastian Thrun’s Probabilistic Robotics text
includes a detailed review of the state of art in indoor SLAM
techniques [11]. Visual SLAM has been demonstrated in
several applications [12], including Bearings-Only SLAM
[13] and monocular SLAM [14], however, vision alone
cannot measure scale. Furthermore, previous techniques use
inertial data to resolve for scale in SLAM [1]–[4], however,
it is important to note that an IMU will not work in orbit.
Anything in orbit is in free fall and an IMU is a specific
force sensor and is therefore unable to provide any useful
measurements of acceleration due to gravity. The distinction
of this work is that it explicitly models gravity in orbit
to resolve for scale in the monocular SLAM problem.
We demonstrate that this technique produces stable results
through a series of Monte Carlo experiments.

III. METHOD

A. Overview

Orbital SLAM is implemented as an Extended Kalman
filter [15]. The filter tracks the vehicle position and velocity
as well as the state of the orbited body using a co-state rep-
resentation. Visually distinct points on the body are tracked
and stored as 3D “landmarks” representing the shape of the
orbited body. The spacecraft state and surface landmarks are
initialized to their true values with large amounts of added
error and then are propagated forward in time in the process
update using knowledge of orbital mechanics. Measurements
are obtained by tracking the surface landmarks in camera
images of the orbited body over time. The filter processes
them in the measurement update as bearing angles, updates
spacecraft position and velocity, and corrects landmark loca-
tions over time, thus building and continuously correcting a
map of the orbited body. The goal is to show the covariance
of the landmark locations and the spacecraft state decrease
over time to show that the orbital gravity model stabilizes
the estimate. A simplyifing assumption of this work is that
the planet is not moving for the purposes of detecting and
tracking features. This is discussed in more detail as future
work.

B. Mathematical Derivation of Orbital SLAM

1) Process Update: The state vector contains information
about both the spacecraft and its surroundings. In the case
of orbital SLAM, spacecraft position and velocity along
with landmark locations are tracked in three dimensions.
Landmarks are considered to be surface features on the
orbited body. Specifically, the spacecraft state vector, xs (Eq.
1) along with the estimated map of landmark locations xl

(Eq. 2) make up the total combined state vector x as defined
by Eq. 3.

xs =

[
rs
vs

]
Spacecraft Position
Spacecraft Velocity (1)

xl =

rl1
...

rlN

 Position of N landmarks (2)

x =

[
xs

xl

]
(3)

The dynamics of the system are modeled using a spherical
gravity model and assume no additional perturbations. It is
also assumed surface landmarks do not move over time. Eq.
4 gives the continuous-time motion model of the state, where
Eq. 5 defines the acceleration on the spacecraft due to the
planet. In Eq. 5, G represents the gravitational constant, mm

represents the mass of the planet, and rms represents the
vector from the planet to the spacecraft.
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ṙs
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as =
−Gmmrms

‖rms‖3
(5)

The motion described by Eq. 4 can be discretized as
in Eqs. 6 and 7. M is defined as the motion matrix and
describes how the state changes with time.

xt = xt−1 + M (6)

M =

vst−1∆t+ 1
2ast−1∆t2

ast−1∆t
0(3N,1)

 (7)

The state transition matrix, A, as defined by Eq. 8, is
used to propagate the state x forward in time, therefore it
contains the dynamics of both the spacecraft and landmarks.
It can be partitioned into two pieces; one for propagating
the spacecraft state, As (Eq. 9) and the identity matrix,
I, since it is assumed the landmarks are not moving over
time. Specifically, As contains the Keplerian motion of the
spacecraft in orbit noting that as is a scalar defined by Eq.
10.

A =

[
As 0(6,3N)

0(3N,6) I3N

]
(8)

As =

[
I3 + ( 1

2as∆t
2)I3 ∆tI3

(as∆t)I3 I3

]
(9)



as =
−Gmm

‖rms‖3
(10)

The process update uses the known dynamics of the
system to continuously propagate the state and covariance
forward in time. Eq. 11 gives the state update and is a
linearized form of Eq. 6. Eq. 12 gives the covariance update
where the superscripts − and + indicate a priori and a
posteriori a measurement update.

xt = Axt−1 (11)

Σ−
t = GΣ+

t−1GT + FTQF (12)

Q is a six- dimensional square matrix that represents the
process noise covariance and F (Eq. 19) extends it to a
square matrix of size 3N + 6.

F =
[
I6 0(6,3N)

]
(13)

G is the derivative of the motion model given by Eq. 6.
As a result of its additive form, it can be expanded to the
form given by Eq. 14 where g is the Jacobian of motion
matrix M with respect to the full state given by Eq. 15.

G = I3N+6 + FTgF (14)

g =
∂M

∂x
(15)

2) Measurement Update: Measurements are represented
as the angles-only spherical coordinate representation of a
surface landmark in the reference frame of the spacecraft
as shown in Fig. 1. Therefore, the measurement model is
given by Eq. 16 where the subscripts l and s represent the
landmark and spacecraft respectively.

Figure 1. This shows a visualization of a sample measurement. The
spacecraft’s reference frame is indicated by the teal vectors, while its XY
plane is indicated by the white grid. The green vector represents that to a
landmark, while its projection in the satellite’s XY plane is indicated by
the yellow vector. The two angles, θ and φ, are the measurement received
for each landmark.

ẑ =

[
θ
φ

]
= h(x) =

arccos

(
zl−zs√

(xl−xs)2+(yl−ys)2+(zl−zs)2

)
arctan

(
yl−ys

xl−xs

)


(16)
Measurements of landmarks are processed sequentially at

a given time. Therefore, zj represents a single measurement
of the j-th landmark for all N landmarks. To calculate the
Kalman gain, it is necessary to calculate the Jacobian of
the measurement model, H, with respect to the full state as
given by Eq. 17.

H = hFj (17)

Since measurements are processed sequentially, the Jaco-
bian will only depend on the spacecraft location and the
location of the j-th landmark. Therefore, H can be factored
into a lower dimensional Jacobian h, given by Eq. 18, and
the matrix F, which maps h into a matrix of the dimension
of the full state vector [11].

h =
∂h(x)

∂xs, rlj

∣∣∣∣
x−

(18)

Fj =

[
I6 0(6+3,3j−3)

0(6,3) 0(6+3,3N−3j)0(3,6) I3

]
(19)

The Kalman gain is then computed in Eq. 20, noting that
R represents the measurement noise covariance, so that full
state and covariance can be updated in Eqs. 21 and 22.

K = ΣHT[HΣHT + R]−1 (20)

xt = xt−1 + K · (z− ẑ) (21)

Σt = (I−KH)Σt−1 (22)

IV. SIMULATED LANDMARK DETECTION

The SLAM approach was validated using a high fidelity
visual simulation of the moon. A model produced by the
NASA LRO team [16] was rendered using a raytracer [17]
and lit using a sun lamp to produce highly realistic imagery
representative of a lunar mission. The model is accurate
to within 20 meters in the local horizontal plane and 1
meter in radius. It accounts for variation in the radius of
the moon [18]. The raytracer models reflectance using the
Oren-Nayer [19] reflectance model. This is a commonly used
approximation of the true reflectance model of the moon.

At each filter measurement time (every 30 seconds),
an image was produced using the renderer and processed
as follows to simulate a measurement. The image was
processed using Speeded up robust features (SURF) [20] to
detect features in the current frame. Each SURF descriptor



in the current frame was matched to a database of features
to produce a feature identifier. The pixel coordinate of
the feature in the image was converted into a bearing
angle in the body frame of the spacecraft. The body frame
measurement was converted to a world frame (J2000 [21])
coordinate by incorporating a simulated measurement from
a star tracker. Representative noise for the star tracker was
added to produce a measurement that accurately represents
the process commonly utilized in spacecraft.

Images were rendered using a pinhole camera model with
the following intrinsic parameters: focal length of 35mm,
image sensor size of 32mm x 18mm, and image resolution
of 1920 x 1080 pixels. The principal point was assumed to
be at the center of the image sensor.

Because the focus of this paper is in evaluating the stabil-
ity of tracking after initialization, features were initialized
using a highly perturbed version of ground truth. Feature
tracking was detected features and discarded ones with more
than 20km of error from the matching feature.

The pipeline for simulating landmark detection is shown
in Figure 2.

Figure 2. Flow chart of process from rendering image to generating
bearing angle

V. RESULTS

The orbital SLAM filter was tested using two techniques.
First it was tested in Monte Carlo simulation to demonstrate
filter convergence and to show the orbital gravity model
resolves for scale. Then, it was tested in conjunction with a
landmark detection and tracking algorithm on a high-fidelity
moon model. This high-fidelity simulation is more realistic
of the conditions that would be encountered in space and
therefore more accurately models the errors in measurements
that would be seen in a real mission.

A. Monte Carlo Simulations

Two Monte Carlo experiments were run to test Orbital
SLAM. The goal is to show the covariance and error of
the spacecraft state and landmark locations decreasing over
time. Successful simulation demonstrates that knowledge of
gravity in orbit resolves scale for orbital SLAM. A lunar
orbit was generated in AGI’s Satellite Toolkit (STK) with
orbital parameters given in Table I.

Table I. Test Orbit Parameters

a e i Ω ω M
2037.4 km 1 · 10−6 0° 0° 0° 0°

Landmark locations were randomly chosen for each sim-
ulation as uniformly distributed points on a sphere of radius
1737.4 km, representing an estimate of the average radius
of the Moon. Spacecraft position and velocity as well as
landmark locations were initialized to their true value with
added normally distributed random noise. It was assumed
that landmarks could be seen at all times, and the Moon was
considered to be non-rotating. The first simulation had initial
noise added to the spacecraft location on the order of 10
km, to the spacecraft velocity on the order of 0.1 km/s, and
to the landmark locations on the order of 1 km. Simulated
measurements had noise on the order of 0.01 radians added.
The algorithm was run 25 times and 30 landmarks were
used for 500 simulated minutes. Fig. 3 shows the results
of this initial test, where the green orbit and the teal and
black circles represent truth, and the red and magenta lines
represent the estimated orbit and landmarks.

Figure 3. This plot shows the first Monte Carlo simulation results. Noise
on the order of 10 km was added to initial spacecraft location, on the order
of 0.1 km/s to initial spacecraft velocity, and on the order of 1 km to initial
landmark locations. The results of 25 runs are plotted on top of truth orbit
and landmarks, their close proximity indicating good convergence.

The red dot represents the starting location of the space-
craft in orbit. The position of the numerous red orbits on top
of the green truth orbit and the placement of the magenta
landmarks inside the teal and black truth landmarks are
indications of good convergence. This is further validated
by Figs. 4a, 4b, and 4c. Specifically, Fig. 4a shows space-
craft position error in the x dimension plotted over time
and its corresponding covariance. Algorithm convergence is
validated by position error for all 25 runs falling within
±3
√
σ and by the error being centered at zero. Similarly,

Fig. 4b shows spacecraft velocity error in the x dimension
over time and its corresponding covariance zoomed in and
Fig. 4c shows a sample landmark’s position error in the x
dimension and its corresponding covariance over time.

Since the algorithm converged with the amount of noise
indicated, tests were run to see how large of an initialization



(a) Spacecraft position error in X and covariance plotted over time. (b) Spacecraft velocity error in X and covariance plotted over time.

(c) Single landmark position error in X and covariance plotted over
time.

Figure 4. Algorithm convergence is validated by the error falling within ±3
√
σ for all runs of the Monte Carlo simulation.

(a) Spacecraft position error in Y and covariance plotted over time
with increased initialization error.

(b) Spacecraft velocity error in Y and covariance plotted over time
with increased initialization error.

Figure 5. Algorithm convergence is validated by the error falling within ±3
√
σ for all runs of the Monte Carlo simulation.



(a) Noise models in X of the same landmarks
shown in Figure 6d.

(b) Noise models in X of the same landmarks
shown in Figure 6d.

(c) Noise models in X of the same landmarks
shown in Figure 6d.

(d) This figure illustrates the noise model for all tracked landmarks
in the 1200 minute orbit by plotting the error in pixels.

Figure 6. Noise model of landmark tracking simulation

error it could handle. The second test was run with error on
the order of 10 km in spacecraft position error, of 1 km/s in
spacecraft velocity error, and of 10 km in landmark location
error. Measurement noise was kept at 0.01 radians. Fig. 5a
shows spacecraft position error over time, this time in the
y dimension, while Fig. 5b shows landmark position error
over time. These results show that the Monte Carlo runs stay
within the filter covariance bounds, and that the covariance
is decreasing, indicating convergence.

B. Landmark Tracking Simulation Results

The parameters of the Clementine orbit used are given in
Table II where θ represents the true anomaly.

Table II. Clementine Orbit Parameters

a e i Ω ω θ

3414.5 km 0.3678 114.146° 3.201° 26.059° 162.997°

Landmarks were tracked through 1200 minutes worth
of images and measurements were received by the filter
every 30 simulated seconds. A standard deviation of 10
km initialization error was added to the landmarks and
the spacecraft position. A standard deviation of 0.10 km/s

initialization error was also added to the spacecraft veloc-
ity. The noise model for the landmark tracking is shown
in Figure 6, with maximum error of 20 km. Error was
capped by comparing to ground truth positions and removing
landmarks from consideration if their distance from ground
truth was more than x km (in this case x = 20). Figure
7 illustrates the spacecraft position, velocity, and a single
landmark’s position error plotted over time. The “steps” in
the landmark position error (Fig. 7c) occur when the filter
does not receive landmark measurements. This is a result of
the inability to track landmarks when the spacecraft is in
total darkness or when it is at periapsis and the camera’s
field of view becomes too narrow.

VI. CONCLUSIONS & FUTURE WORK

This paper has presented a method for orbital SLAM
by tracking surface landmarks through camera images over
time. The technique determines spacecraft position and
velocity along with landmark locations using bearings-only
measurements of landmarks and knowledge of orbital me-
chanics.This method enables true spacecraft autonomy by
replacing radio localization with onboard localization. When
combined with a gravity model, results show visual SLAM



(a) Spacecraft position error in Z and covariance plotted over time. (b) Spacecraft velocity error in Z and covariance plotted over time.

(c) Single landmark position error in Z and covariance plotted over
time.

Figure 7. Algorithm convergence is validated by the error falling within ±3
√
σ.

converges to the correct scale.
Future work lies in determining a proper method for

landmark initialization. Currently, landmarks are initialized
to their true location with large added error. More robust
initialization methods exist in the literature [13] and future
iterations of orbital SLAM will take advantage of these
methods. In addition, further work should address field of
view and the duration of landmark visibility, as well as take
into account planetary rotation.
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