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Abstract This paper presents a real-time viable method for Simultaneous Localiza-
tion and Mapping (SLAM) using Gaussian mixture models (GMMs) for compute-
constrained systems that operate in subterranean environments. The two contribu-
tions of this work are (1) a SLAM formulation that uses a GMM-based map rep-
resentation for pose estimation, mapping and loop closure and (2) an Expectation
Maximization (EM) formulation that significantly reduces the time to learn a GMM
from a sensor observation by exploiting the insight that although Gaussian distribu-
tions have infinite support, a substantial amount of the support is contained within
a finite region. An on-manifold distribution-to-distribution registration approach is
used to estimate pose between consecutive GMMs and the Cauchy-Schwarz diver-
gence is employed to calculate the difference between the distributions to identify
loop closures. The method is evaluated in mine and unstructured cave environments.
The results demonstrate superior performance in leveraging the compact represen-
tation of the GMM as compared to traditional pose graph SLAM techniques that
rely on pointcloud-based methods. Further, exploiting the sparsity of the compact
support significantly reduces training time towards enabling real-time viability.

1 Introduction

Search and rescue operators benefit from enhanced situational capabilities provided
by robots during time-critical and life-threatening operations [19]. Robot percep-
tion in disaster environments is challenging as these environments are highly clut-
tered, unstructured and unpredictable. In addition, communications infrastructure
may deteriorate or become completely disabled over extensive areas for hours or
days during natural disasters [20] hindering search and rescue operations. These
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environmental constraints create the need for compact, efficient environment repre-
sentations that are transmissible over low bandwidth communications networks.

GMMs compactly represent high-resolution sensor observations and have been
demonstrated to enable occupancy modeling [21] and estimate pose [26] with or-
ders of magnitude reduction in memory required to store and transmit the data as
compared to raw sensor observations [27]. While Eckart [10] provides a qualitative
evaluation of a laser-based SLAM formulation leveraging hierarchical GMMs, to
the best of the authors’ knowledge, a quantitative analysis of GMM-based SLAM
that incorporates loop closures has not been conducted. The proposed work bridges
this gap in the state of the art by developing GMM mapping that incorporates global
consistency and exploits the sparse compact support to reduce the dimensionality of
calculations.

The paper is organized as follows: Section 2 details related work followed by a
description of the methodology in Section 3. Section 4 provides an analysis of the
proposed approach as compared to the state of the art and Sections 5 and 6 conclude
the paper with a discussion of the limitations of the method and future work.

2 Related Work

Generative modeling has experienced a resurgence in recent years due to the vision
that disparate pointcloud-based perception algorithms may be unified into a com-
mon pipeline [10]. A top-down hierarchical GMM approach is developed by Eckart
et al. [8] to accelerate learning by employing a sparsification technique that adjusts
the posterior between levels so that child mixture components share geometric con-
text information in a soft partitioning scheme. The proposed approach does not em-
ploy a hierarchy but leverages the Mahalanobis distance as a sparsification technique
in Expectation Maximization. Srivastava and Michael [23] develop a bottom-up hi-
erarchical approach that assumes known pose estimates and merges partial sensor
observations into one monolithic GMM. This approach is susceptible to accumula-
tion of noise and pose drift, which makes corrections to enable global consistency
difficult. In contrast, the proposed approach represents each sensor observation as a
GMM to enable corrections when closing the loop.

The Normal Distribution Transform map is learned by voxelizing a sensor obser-
vation and calculating a Gaussian density within each cell [24]. Pose is estimated
by minimizing the L2 distance between the two distributions. While fast, this ap-
proach has been determined to be less accurate than point-based approaches like
Generalized-Iterative Closest Point (GICP) [26].

Evangelidis and Horaud [12] develop a batch registration algorithm for multiple
point sets that estimates GMM parameters, rotations, and translations via an Ex-
pectation Maximization algorithm. While accurate, it is not real-time viable. Eckart
et al. [9] develop an approach that simultaneously trains and registers GMMs. The
Mahalanobis distance is used to compute the distance between points and estimate
optimal rotation and translation for registration. While the accuracy is on par with
several ICP variants, the approach is evaluated on a NVIDIA Titan X GPU, which
is prohibitive for use on size, weight, and power constrained systems.
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Behley and Stachniss [2] develop a SLAM formulation for 3D laser range data,
but require a GPU to achieve real-time results. The authors opt for a frame-to-model
ICP that registers a pointcloud to surfel model. Loop closure detection proceeds
by checking nearby poses against the current laser scan with ICP and rendering a
view of the current map to determine if the loop closure leads to a consistent map
given the current scan. Multiple initializations of ICP with different translations and
rotations are required to determine an adequate pose estimate. In contrast to ICP,
GICP has been demonstrated to be more robust to large changes in rotation and
translation [22]. The proposed approach is compared to [2].

(a) Image of Rapps Cave (b) Pointcloud representation (c) K-Means++ clusters

(d) 1-sigma covariances (e) 2-sigma covariances (f) Resampled model

Fig. 1: Overview of the process to learn a GMM from a sensor observation. (a) An image taken
from Rapps Cave in WV, USA. (b) A corresponding pointcloud colored according to viewing
distance (red is further away). (c) Each color corresponds to a cluster learned with the K-Means++
algorithm. The red ellipsoids in (d) and (e) are visualizations of the 1-sigma and 2-sigma contours
of constant probability of the Gaussian mixture components after running EM, respectively. The 1-
sigma visualization represents approximately 20% of the probabilistic coverage of the underlying
point density and 2-sigma approximately 74%. Because the GMM is a generative model, samples
may be drawn from the distribution to obtain the reconstruction in (f).

3 Methodology

In this work, each sensor observation is represented as a GMM. Figure 1 illustrates
the method by which a GMM is learned from a sensor observation to generate an
environment map. A mathematical description of the GMM and the approach to
enable real-time viable parameter estimation is detailed in Section 3.1. Section 3.2
describes the distribution-to-distribution registration, SLAM, and loop closure ap-
proaches.
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3.1 Gaussian Mixture Model

A GMM is a probability distribution that represents multivariate data as a weighted
combination of M Gaussian distributions. The probability density of the GMM is
represented as

p(x|ξ) =
M

∑
m=1

πmN (x|µm,Λm)

where x ∈ RD, πm is a weight such that 0 ≤ πm ≤ 1,
M
∑
m

πm = 1, and N (x|µ,Λ) is a

D-dimensional Gaussian density function with mean µ and covariance matrix Λ.

N (x|µ,Λ) = |Λ|
−1/2

(2π)D/2 exp

(
− 1

2
(x−µ)TΛ−1(x−µ)

)

The parameters of the distribution are compactly represented as ξ= {πm,µm,Λm}M
m=1.

Estimating the parameters of a GMM remains an open area of research [14]. Given
the density function p(x|ξ) and observations X = {x1, . . . ,xN}, x ∈ RD assumed
to be independent and identically distributed with distribution p, the density for the
samples is

p(X|ξ) =
N

∏
n=1

p(xn|ξ) = L (ξ|X)

where L (ξ|X) is called the likelihood function and the goal is to find the ξ∗ that
maximizes L [3]

ξ∗ = argmax
ξ

L (ξ|X)

It is analytically easier to maximize ln(L (ξ|X)), but the presence of the summation
over m inside the logarithm make ξ difficult to compute and taking the derivative
of this log likelihood function and setting to zero is made intractable because the
resulting equations are no longer in closed form [4]. Instead, latent variables bnm ∈
B are introduced that take a value of 1 if the sample xn is in cluster m and 0,
otherwise (called a 1-of-M coding scheme). A new likelihood function is defined
p(X,B|ξ) = L (ξ|X,B), called the complete data likelihood.

The Expectation step in Expectation Maximization finds the expected value of
ln p(X,B|ξ) by the following function [3]

Q(ξ,ξi) = E
[

ln p(X,B|ξ)|X,ξi
]

The Maximization step maximizes the expectation of the previous equation:

ξi+1 = argmax
ξ

Q(ξ,ξi)
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Each iteration of these steps is guaranteed to increase the log likelihood and ensure
that the algorithm converges to a local maximum of the likelihood function [3].

3.1.1 Initialization

Kolouri et al. [18] find the EM algorithm to be sensitive to the choice of initial
parameters and Jian and Vemuri [15] prove that random initialization causes the
EM algorithm to converge to a bad critical point with high probability. Because the
EM algorithm does not guarantee convergence to a global optimum, the initializa-
tion is critical for convergence to a good stationary point. The proposed approach
implements the K-Means++ algorithm [1], which is an unsupervised learning al-
gorithm that provides an initial clustering of the sensor data (see Fig. 1c) and has
advantages over the standard K-Means algorithm in that it provides approximation
guarantees for the optimality of the algorithm that improve the speed and accuracy.
Several variants of K-Means are proposed in the literature [6, 11, 13], but this work
leverages the method proposed in Elkan [11] as it was found to achieve the best
performance. Elkan [11] increases efficiency by employing the triangle inequality
and maintaining lower and upper bounds on distances between points and centers.
Given the range sensor data in Fig. 1b, the K-Means++ algorithm outputs the clus-
tering shown in Fig. 1c. These clusters are used to seed the EM algorithm detailed
in the next section.

3.1.2 Expectation Maximization

The EM algorithm proceeds with the following steps:

1. Initialize µm, Λm and πm with the method detailed in Section 3.1.1.
2. E step. Evaluate the responsibilities γnm using the current parameters µm, Λm

and πm:

γnm =
πmN (xn|µm,Λm)
M
∑
j=1

π jN (xn|µ j,Λ j)

(1)

3. M step. Estimate the new parameters µi+1
m , Λi+1

m and π i+1
m using the current

responsibilities, γnm.

µi+1
m =

N
∑

n=1
γnmxn

N
∑

n=1
γnm

(2)

Λi+1
m =

N
∑

n=1
γnm(xn−µi

m)(xn−µi
m)

T

N
∑

n=1
γnm

(3)
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πi+1
m =

N

∑
n=1

γnm

N
(4)

4. Evaluate the log likelihood

ln p(X|ξ) =
N

∑
n=1

ln

(
M

∑
m=1

πmN (xn|µm,Λm)

)
(5)

and check for convergence of either the parameters or the log likelihood. If con-
vergence is not achieved, iterate again from step 2.

Figures 1d and 1e provide a visualization of the GMM with 1- and 2-sigma covari-
ances after running EM. While the K-means algorithm performs a hard assignment
of data points to clusters, the EM algorithm makes a soft assignment based on pos-
terior probabilities. The intuition behind the soft assignment yields one of the con-
tributions of this paper which is that because Gaussians fall off quickly, points far
away from an initialized density will have a small effect on the updated parame-
ters for that density. The responsibility matrix Γ ∈ RN×M scales with the number
of samples N and the number of components M, so to reduce the computation time,
an approximation is made to ignore points that lie outside a Mahalanobis distance
greater than λ for the initialized density. EM is modified in the following way:

1. Initialize µ1
m, Λ1

m and π1
m with the method detailed in Section 3.1.1.

2. For a given component m, evaluate only the γnm that satisfy Mahalanobis-bound:

λ <
√
(xn−µ1

m)
T (Λ1

m)
−1(xn−µ1

m) (6)

3. Estimate the updated parameters µi+1
m ,Λi+1

m , and π i+1
m with the current responsi-

bilities γnm and Eqs. (2) to (4).
4. Evaluate the log likelihood (Eq. (5)) and iterate again from step 2 if convergence

is not achieved.

3.2 Pose Graph SLAM via GMM Registration

Each sensor observation is represented as a GMM with M components and succes-
sive GMMs are registered together using the approach detailed in [26], which is
summarized in Section 3.2.1. Loop closures are detected by aligning observations
within a given radius r of the current pose until a match is found that achieves the
fitness threshold α .

The pose graph is formulated as a factor graph [16] where factors represent con-
straints between poses, or nodes. The factor graph G = (F ,V ,E ) is composed of
factor nodes fi ∈F and variable nodes v j ∈ V with edges ei j ∈ E connecting the
factor nodes and variable nodes. The factor graph finds the variable assignment V ∗

that maximizes

V ∗ = argmax
V

∏
i

fi(Vi) (7)
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where Vi is the set of variables adjacent to the factor fi and independence rela-
tionships are encoded by the edges ei j such that each factor fi is a function of the
variables in Vi. The pose graph uses relative constraints from GMM registration with
a covariance based on the depth sensor model.

3.2.1 Registration

Following the approach of [26], let Gi(x) and G j(x) denote GMMs learned from
sensor observations Zi and Z j, respectively,

Gi(x) =
M

∑
m

πmN (x|µm,Λm)

G j(x) =
K

∑
k

τkN (x|νk,Ωk)

and let T (·,θ) denote the rigid transformation consisting of a rotation R and trans-
lation t. To register G j(x) into the frame of Gi(x), optimal rotation and translation
parameters must be found such that the squared L2 norm between the distributions
Gi(x) and T (G j(x),θ) is minimized. The transformation parameters θ consisting
ofR and t may be applied to a GMM G j(x) in the following way

T (G j(x),θ) =
K

∑
k=1

τkN (x|Rν+ t,RΩkR
T )

The cost function is

θ
∗ = argmin

θ

∫
||Gi(x)−T (G j(x),θ)||22dx (8)

= argmin
θ

∫
||Gi(x)||22 + ||T (G j(x),θ)||22−2Gi(x)T (G j(x),θ)dx (9)

The first term in Eq. (9) does not depend on the transformation parameters θ and
remains constant; therefore, it may be eliminated. The second term is invariant under
rigid transformation and also may be eliminated. Thus, Eq. (8) may be rewritten as

θ
∗ = argmin

θ

−
∫

2Gi(x)T (G j(x),θ)dx

which has a closed form solution as shown in [26]

θ
∗ = argmin

θ

−
M

∑
m=1

K

∑
k=1

πmτkN (µm|Rνk + t,Λm +RΩkR
T )

The optimal rigid transformation parameters may be solved for by employing a Rie-
mannian trust-region method with conjugate gradients [5]. The registration method
used in this work is the Isoplanar variant from [26] that modifies the covariances
prior to registration to smooth the cost function. The modified covariance is com-
puted by calculating the eigen decomposition Λm = UmDmU

T
m and replacing the



8 Wennie Tabib and Nathan Michael

matrix of eigenvalues, Dm, with diag(
[
1 1 ε

]T
) where ε is a small constant (e.g.,

0.001) that represents the smallest eigenvalue.
The GMM provides a compressed representation of tens or hundreds of thou-

sands of points in a sensor observation with a small number (several tens or hun-
dreds) of mixture components. Representing the sensor observation in this way
yields fast and robust registration because the compactness of this representation
enables each pair of mixture components from the source and target distributions
to be compared in the registration cost function much more quickly than would
be possible when operating directly on the uncompressed pointcloud. In contrast,
pointcloud-based techniques like ICP and GICP must bound the search for match-
ing points in order to remain real-time viable.

3.2.2 Loop Closure

When the current estimated pose j is within a fixed radius r away from a previously
visited pose i represented in the factor graph, the poses are considered candidates for
loop closure. The estimated pose difference is used to seed the registration between
GMMs Gi(x) and G j(x) associated with poses i and j in the factor graph. After reg-
istration, the updated pose θ is used to transform G j(x) into the frame of Gi(x) by
applying the transform T (G j(x),θ). To determine if the GMMs partially overlap the
same scene, the Cauchy-Schwarz divergence [17] is used to measure the difference
between T (G j(x),θ) and Gi(x). This measure is employed by Kampa et al. [17]
as an entropic measure for classification for distributions and has the same extrema
as that of the cost function used in registration. The loop closure problem may be
viewed as a classification problem where the goal is to determine whether the scene
under consideration by the current view has been previously observed.

Equation (10) is the Cauchy-Schwarz divergence that measures the difference
between probability density functions. A closed-form expression for this equation
for mixtures of Gaussians is derived in [17].

DCS

(
Gi(x),T (G j(x),θ)

)
=− log

( ∫
Gi(x)T (G j(x),θ)dx√∫

Gi(x)2dx
∫

T (G j(x),θ)2dx

)
(10)

This measure is not a metric because it does not satisfy the triangle inequality, but
0 ≤ DCS(Gi(x),T (G j(x),θ)) ≤ ∞ and it satisfies the symmetry property, meaning
that DCS(Gi(x),G j(x)) = DCS(G j(x),Gi(x)). Furthermore, the distributions Gi(x)
and G j(x) are the same only when DCS(Gi(x),G j(x)) = 0.

If DCS(Gi(x),T (G j(x),θ)) is less than a pre-defined threshold, an edge is added
between the poses i and j in the factor graph. Quantifying how different one dis-
tribution is from another provides a robust threshold for determining the existence
of loop closures because the distribution represents the spread of the samples in
the environment. Points sample the 3D world but there is no guarantee that exactly
the same point is observed from consecutive observations. Because observations are
composed of thousands of points, only distances between nearest points are consid-
ered to remain tractable.
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(a) Aerial system flies in Rapps Cave (b) Aerial system

Fig. 2: (a) A custom-built aerial system collects data in an expansive cavern of Rapps Cave in WV,
USA. (b) The aerial system is equipped with a VLP-16 laser scanner.

4 Results

The proposed approach is compared to the Surfel Mapping (SuMa) approach devel-
oped in [2], which is a highly optimized, parallelized implementation for GPU. The
GMM formulation is run single-threaded so the timing performance is not one-for-
one comparable. 420 LiDAR1 observations are collected from a ground vehicle in
a mine and 450 observations are collected from an aerial system (shown in Fig. 2b)
in a cave.

All of the experiments are run on a low-power, embedded Gigabyte Brix with an
Intel i7 8550U CPU, four cores (8 hyperthreads), and 32GB of RAM suitable for
use on a SWaP-constrained robotic system. The Cauchy-Schwarz divergence loop
closure threshold is set to − log(1×10−6 ). Both SLAM implementations employ
the GTSAM framework [7]. 100-component GMMs are used in both experiments
and the parameters are kept constant for both experiments.

SuMa is originally developed for the Velodyne HDL-64E2 so the following pa-
rameters are updated to work with the Velodyne VLP-16. The data width and height
are changed to 500 and 16, respectively. The model width and model height are
changed to 500 and 16, respectively. The fields of view up and down are changed
to 15 and -15. The map max. angle is changed to 30, sigma angle to 2, and sigma
distance to 2. The loop closure distance is also changed to match the setting of the
GMM approach.

Two measures are used to evaluate the SLAM results. The Root Mean Square
Error (RMSE) as detailed in [25] and the odometric error. The RMSE is defined as
the relative pose error at time step i:

Ei :=
(
Q−1

i Qi+1

)−1(
S−1

i Si+1

)
(11)

RMSE(E1:n) :=

(
1

n−1

n−1

∑
i=1
‖trans(Ei)‖2

)1/2

(12)

1 https://velodynelidar.com/vlp-16.html
2 https://velodynelidar.com/hdl-64e.html
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where trans(Ei) refers to the translational components of the relative pose er-
ror Ei, the estimated trajectory S1, . . .Sn ∈ SE(3) and the ground truth trajectory
Q1, . . . ,Qn ∈ SE(3). The odometric error is computed as the translation and rota-
tion error between frames 1 and j where j ∈ [1,n]:

E j :=
(
Q−1

1 Q j

)−1(
S−1

1 S j

)
(13)

OE(E1:n) := ‖trans(E j)‖ (14)

For both relative pose and odometric errors, the rotation errors are similarly com-
puted. Ground truth for the mine dataset is provided by Near Earth Autonomy3.
GPS is unavailable in the cave so ground truth estimates are obtained using a map
generated from a survey-grade, high accuracy FARO scanner4.

EM Variant Mine Avg. Train. Time (s) Cave Avg. Train. Time (s)
Standard EM 1.888 2.365
Mahalanobis EM 0.848 1.054
Mahalanobis EM & KMeans++ Redux 0.2406 0.322

Table 1: Timing analysis for the Mine (also shown in the bar graph in Fig. 4f) and Cave (also
shown in the bar graph in Fig. 5h) datasets. The Mahalanobis EM variant is approximately 2.25
times faster than the standard EM approach. With the K-Means++ reduction and point filtering, the
runtime reduces approximately by a factor of 7.
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Fig. 3: The λ parameter from Eq. (6) is varied to determine a suitable value that balances accuracy
of registration with time to compute the GMM. (a) and (b) demonstrate that for smaller values
of λ the accuracy of the pose estimate decreases and (c) demonstrates the time to run EM with-
out initialization increases as the value of λ increases. λ = 5 is chosen to achieve accurate pose
estimation while remaining real-time viable.

A timing analysis for training the GMM is provided in Table 1. The table il-
lustrates that the Mahalanobis variant of EM from Eq. (6) reduces the timing by a
factor of approximately 2.25. The remaining time for the Mahalanobis EM is due to
initialization. To decrease the time even further, points outside of a 15 m range are
removed for both GMM initialization and training. This is not done for the SuMA
approach because it negatively impacts the quality of the pose estimates. The time
for GMM initialization is further reduced by using a downsampled set of points

3 https://www.nearearth.aero/
4 https://www.faro.com/
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(every fifth point) for initialization and then assigning all remaining points to the
closest cluster. Processing the data in this way leads to the training times labeled
Mahalanobis EM & KMeans++ Redux in Table 1, which is approximately 7 times
faster than the standard EM. This initialization and EM approach are used for train-
ing GMMs in the mine and cave experiments. Registration times are also provided
in Figs. 4e and 5g. The frame-to-frame registration times for SuMa are reported
for timing to compare fairly; however, the more accurate frame-to-model SLAM
approach is used in all other plots and tables. For both evaluations, the GMM ap-
proach requires less data to transmit than the SuMa approach (Figs. 4g and 5i) due
to the compactness of the GMM representation.
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Fig. 4: Results for the Mine dataset. (a) and (b) illustrate the odometric errors as a function of
distance traveled. (c) presents a view of the ground truth trajectory in black with each approach
overlaid in different colors. (d) presents the RMSE values to evaluate the relative pose error be-
tween consecutive sensor observations. (e) presents the registration times and (f) illustrates the
timing comparison from the second column of Table 1 as a bar chart. (g) illustrates the cumulative
data transferred by each approach as a function of distance traveled.

An analysis is conducted to determine an adequate value for λ using the mine
dataset (see Fig. 3). For the following experiments, λ = 5 as it yields accurate pose
estimates while remaining real-time viable.

4.1 Mine

The experiment consists of 420 LiDAR observations in a mine environment taken
from a ground vehicle. Figures 4a and 4b illustrate the error between the estimated
pose as a function of distance traveled for the path taken by the vehicle shown
in Fig. 4c. Figure 4d presents the RMS errors for consecutive pose estimates as
a table. The translation RMSE values are slightly lower for the GMM approach and
the rotation RMSE values are slightly lower for the SuMa approach. The odometric
errors approximately follow the trends of the RMSE values.
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The timing results in Figs. 4e and 4f demonstrate that the Mahalanobis EM with
the KMeans++ reduction approach is able to significantly reduce the time to create a
GMM. SuMa takes the least time but this approach is parallelized on the integrated
GPU in the 8550U.

(a) Ground Truth Model (b) GMM Reconstruction

RMSE (m)
SuMa 3.78×10−2

GMM 2.67×10−2

RMSE (rad)
SuMa 4.57×10−3

GMM 5.05×10−3

(c) RMSE

(d) Trajectory (XY View)
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Fig. 5: Results for the Cave dataset. (a) and (b) illustrate the ground truth and GMM reconstruction
of the environment model. (c) presents the RMSE values for consecutive sensor observations for
each approach after running SLAM. (d) presents a view of the ground truth trajectory in black with
each approach overlaid in different colors. (e) and (f) illustrate the odometric error as a function
of distance traveled. (g) and (h) present a timing comparison for the registration times and EM
variants, respectively. (i) illustrates the cumulative data transferred by each approach as a function
of distance traveled.



Title Suppressed Due to Excessive Length 13

4.2 Cave

Figure 5a illustrates a cross section of the ground truth environment model cre-
ated from LiDAR observations taken from the aerial system shown in Fig. 2. The
path taken by the vehicle is shown in Fig. 5d. In this trial, the GMM approach
is able to close the loop between the start and end points of the trajectory which
leads to significantly lower overall error. One of the limitations of ICP is the cost
function exhibits many local minima that are difficult to overcome when registering
point-based sensor observations. Behley and Stachniss [2] attempt to overcome this
limitation by trying multiple different initializations for the frame-to-model ICP,
but this requires careful tuning of the parameters to ensure that enough variations
in the translation and rotation are tested to successfully register the observations.
The RMS errors in Fig. 5c demonstrate an overall translation error that is slightly
lower for the GMM approach than SuMa. The odometric errors for the trajectory
are shown in Figs. 5e and 5f.

Figures 5g and 5h illustrates the almost 7× reduction in training time for the
GMM as opposed to the standard EM method. SuMa runs on the integrated GPU in
a highly optimized and parallelized way to achieve the reported runtimes. Figure 5b
illustrates the GMM reconstruction of the environment by sampling points from the
distribution.

5 Discussion and Future Work

While the results for the GMM approach presented in Section 4 cannot be run in
real-time on a single thread, there is promise for a multi-threaded implementation.
The distance calculations in K-Means++, responsibilities in EM, and the correspon-
dence between pairs of mixture components in the GMM registration are all readily
parallelizable. Offloading these calculations to a GPU is left as future work to enable
real-time performance.

6 Conclusion

This paper demonstrated a real-time viable method for GMM SLAM for compute-
constrained systems by formulating an EM algorithm that exploits sparsity to sig-
nificantly reduce the time to learn a GMM. GMMs are trained from pointcloud data,
used to estimate pose, and build a map of the environment. A method to close the
loop is presented and the approach is evaluated with real-world data of challenging
mine and unstructured cave environments.
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