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Abstract— This paper presents a real-time, kinodynamic plan-

ning and information-theoretic exploration framework that

enables high-resolution mapping of three-dimensional environ-

ments featuring complex concavities and disjoint objects. The

proposed approach targets planetary exploration applications

and seeks to achieve real-time operation on computationally

constrained systems while ensuring energy-efficient information

acquisition. Trajectories are selected by maximizing a measure

of information gain per an expected execution cost (e.g., time

or energy). The proposed trajectory generation formulation is

based on state-lattice motion primitives and evaluation of the

Cauchy-Schwarz quadratic mutual information (CSQMI) at

each lattice state. An expanded search structure is proposed

that extends the state-lattice to a finite horizon to enable

expansive space coverage while remaining real-time viable.

Additionally, compression techniques are employed to reduce

the computational burden associated with the CSQMI calcu-

lation over expansive environments while preserving fidelity.

The performance of the proposed methodology is evaluated

through simulated exploration of a three-dimensional terrestrial

pit environment by a quadrotor aerial robot which acts as a

surrogate for a propulsive vehicle when operating on an airless

body.

I. INTRODUCTION

We are interested in using aerial robots for autonomous
exploration and mapping of planetary and terrestrial environ-
ments that exhibit expansive and complex three-dimensional
terrain. Planetary pits and caves are of particular scientific
interest as these features offer insight into planetary origins
and may contain volatiles capable of supporting long-term
mission operations and human habitation [2]. For example,
lunar pits and caves are known to be structurally sound and
offer protection from radiation, dust, and large temperature
fluctuations [3]. In these domains, challenges arise due to
system and computational constraints as a consequence of
energy scarcity and the environment complexity. Energy
scarcity limits viable onboard sensing and processing while
environmental conditions and isolated operation preclude the
use of off-board sensing and processing via remote sensors
and communication.
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Fig. 1: (a) Survey data from the Indian Tunnel skylight
at Craters of the Moon National Park1and (b) simulation
environment mesh2.

To address these challenges, an exploration strategy is pro-
posed that combines computationally efficient approaches to
mutual information evaluation and state-space lattice motion
planning [4]. Trajectories encode traversal energy and time
costs and are evaluated for the rate of information gain
per unit cost. The proposed methodology computes maxi-
mally informative motion plans based on the mutual infor-
mation between sensor measurements and an environment
model via an efficient information measure, Cauchy-Schwarz
quadratic mutual information (CSQMI). To overcome the
computational challenges that arise due to the environment
expanse, reduced resolution representations of the map are
computed that preserve relevant information [5]. The result-
ing computationally efficient, information-theoretic objective
and motion planning strategy permit evaluation of hundreds
to thousands of candidate trajectories per second, enabling
selection of locally optimal plans given a complex three-
dimensional environment model. The proposed approach
is evaluated through high-fidelity simulations based on an
environment mesh reconstructed from survey data taken in
an Indian Tunnel skylight at the Craters of the Moon National
Park in Idaho [1] as shown in Fig. 1.

The exploration problem is formulated as an information-
theoretic optimization as in [6]. Recently, there has been



interest in mutual information measures for ranging sensors
based on exact solutions for individual beams and approx-
imations for multiple [7, 8]. The CSQMI approximation
developed by Charrow et al. [8] is employed to evaluate sets
of future measurements. Although perfect state-estimation is
assumed, the proposed approach is complimentary to works
in active-perception that minimize state uncertainty [9, 10]
via a joint optimization [6] or integration [11]. Various
planning strategies are proposed for use in exploration
including motion planners such as RRT [12], numerical
trajectory optimization [13], and Monte Carlo methods [14].
The proposed motion primitive approach is compatible with
vehicle dynamics by construction and reasons about the
sequence of sensor measurements obtained during primitive
execution.

The proposed approach builds on works by Charrow et al.
[8, 13, 15] and Nelson and Michael [5] with contributions
that include: 1) the introduction of information-theoretic
techniques that reduce the environment representational com-
plexity through compression while preserving exploration
fidelity in large three-dimensional environments, and 2) an
efficient motion planning strategy that enables online com-
putation of expected traversal energy and time costs while
ensuring trajectory feasibility and safety.

II. EXPLORATION METHODOLOGY

The proposed methodology consists of two components:
1) an efficient motion planning strategy based on state-
space lattice motion planning techniques, and 2) an efficient
information-theoretic objective function leading to reduction
of environment representational-complexity to enable rapid
evaluation of future sensor observations. We begin by pro-
viding an overview of the relevant system model (a quadrotor
micro air vehicle) in Sect. II-A and detail the motion plan-
ning approach in Sect. II-B. Section II-C presents the map
representation and restates results from Charrow et al. [8] in
the context of the exploration of 3D environments. We also
detail the compression of the map representation to enable
increased computational efficiency while preserving relevant
information [5]. Section II-D presents the integrated explo-
ration strategy toward generation of real-time trajectories that
are both energy-efficient and informative.

A. System Model

We now present a summary of the quadrotor system model
and refer to Mahony et al. [16] for details and notation.
Although this model is used throughout this work, we note
that the model (and proposed approach) are readily adapted
to other aerial or terrestrial vehicle models.

The quadrotor with position (r), radial velocity (!), mass
(m), and inertia (I), moves according to the Newton-Euler
equations

F = mr̈ ⌧ = I!̇ + ! ⇥ I! (1)

where the net forces and moments acting on the system are
F and ⌧ , respectively. Here, F = Fa + Fg is the sum of
applied and gravitational forces. As the rotors are aligned
with the body z-axis, Fa = R

⇥
0 0 fa

⇤T where R is the
rotation matrix between the body and inertial frames.

The rotors have angular velocities $1:4 and spin in alternat-
ing directions. By the static thrust assumption [16, 17] the
rotors produce thrusts and torques,

ti = ct$
2
i , qi = cq$

2
i (2)

respectively, while ct and cq are associated scaling factors.
From (2), the rotor torques and thrusts are related to the body
force and moments by

� = �⌦ (3)

where � =

⇥
fa ⌧1:3

⇤T, ⌦ =

⇥
$2

1:4

⇤T, and � is the
mixer matrix [16]. This quadrotor model is known to be
differentially flat [18].

B. Trajectory Generation and Motion Primitive Graph Plan-
ning

We compute time-parameterized 5

th order polynomial tra-
jectories with boundary value constraints that minimize the
integral of jerk squared for the four flat outputs, x, y, z, and
 using the method developed by Mueller et al. [19].

Similar to the approach proposed by Pivtoraiko et al. [4],
this work employs a state-space lattice, ˆX , that consists of
a collection of motion primitives, M . A motion primitive
is computed given two boundary constraints x̂i, x̂j 2 ˆX ,
i, j 2 {0, . . . , N � 1} with i 6= j. A boundary constraint
x̂i is specified with the flat outputs and their derivatives,
(r, , ṙ, ˙ , r̈, ¨ ). To represent motion primitives in a state-
space lattice, the boundary constraints are stored in N
uniquely identified nodes. Figure 2a illustrates three motion
primitives that form a dictionary. Each motion primitive
drives the vehicle from some initial boundary condition to
some final boundary condition. Motion primitives are stored
as edges between nodes in the dictionary, D = (

ˆX,M).
Feasibility of a primitive is ensured by imposing limits on
the maximum acceleration and velocity over the duration of
the primitive.

We make two optimizations to the approach in [4]. 1) Con-
straints are imposed to ensure all motion primitives begin and
end at lattice states with pre-defined velocity and acceleration
in the body frame x-axis. These constraints ensure that
the vehicle flies in the body-direction to enable obstacle
detection via sensors that point in the direction of forward
motion. 2) The motion primitives are formulated in the
body frame with the heading at the start of each motion
primitive set to zero with respect to the body frame. These
optimizations significantly reduce the size of the search space
over the motion primitives and reduce computation as the
body-frame graph is reused at every planning iteration.
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Fig. 2: (a) A dictionary of three motion primitives in 2D. (b) A graph with depth three constructed from the dictionary. (c)
A graph in 3D constructed from a dictionary of ten motion primitives (associated dictionary not shown). (d) The graph
from (c) after pruning. Sub-optimal and redundant edges are pruned to decrease the number of primitives to search over
during exploration.

a) Motion Primitive Graph: A dictionary of motion primi-
tives (see Fig. 2a) can be reused to create 2D and 3D graphs
as depicted in Figs. 2b and 2c by appending the dictionary to
leaf nodes up to a specified depth. Each successive level is
constructed from the same dictionary. For example, the space
covered in Fig. 2b is formed by repitition of the dictionary
in Fig. 2a to a depth of 3.

As the expansion of nodes at run-time is computationally
expensive, graphs are pre-computed to enable fast search
through many trajectories during exploration. One graph
is computed for each possible initial state consisting of
velocity, acceleration, and jerk. The resulting graph may
contain tens of thousands (or millions) of vertices. Therefore,
Dijkstra’s algorithm, a single-source shortest path algorithm,
is employed to prune the graph [20]. The result is a minimum
spanning tree that contains the lowest cost trajectories from
the root vertex to any other vertex in the graph (see Fig 2d).
The refined graph is pre-computed with linear query time
lookups in the worst case.

C. Mutual Information and Mapping

Uncertainty in a probability distribution is quantified through
entropy measures. The most common and the only one satis-
fying all of Shannon’s axioms is the Shannon entropy [21],

H(X) = �
Z

p(x) log p(x)dx. (4)

The Shannon mutual information is the expected reduction in
entropy of one random variable from observation of another

IS(X,Y ) = H(X)�H(X|Y ). (5)

This can also be defined in terms of the Kullback-Leibler
divergence [21, 22] which describes the difference between

Fig. 3: A partially explored OG from a simulation trial with
occupied (red) and free (black) cells and 0.1m resolution.

two probability distributions:

DKL(p||q) =
Z

p(x) log
p(x)

q(x)
dx, (6)

IS(X,Y ) = DKL(p(X,Y )||p(X)p(Y )). (7)

This leads to definition of mutual information mea-
sures based on other divergences such as Cauchy-Schwarz
quadratic mutual information (CSQMI)

ICS(X,Y ) =

� log

(

RR
p(x, y)p(x)p(y)dydx)2RR

p(x, y)2dxdy
RR

p(x)2p(y)2dxdy
(8)

which has integrals inside the logarithm that can be computed
analytically and efficiently [15, 22].

a) Mutual Information for Occupancy Grids: The environ-
ment is modeled with a 3D occupancy grid (OG), a computa-
tionally efficient representation (see Fig. 3) [23, 24]. Charrow
et al. [8] present a closed form solution to CSQMI for a sin-
gle ranging measurement with an approximate formulation
of O(n) time-complexity for sets of conditionally depen-
dent measurements from generic multi-beam ranging sensors
where n is the number of cells intersected. Figure 4 depicts
a representative CSQMI reward distribution for sensor ob-
servations over a slice of the OG originally shown in Fig. 3.



(a) 3D OG and intersecting plane

(b) 2D OG (c) CSQMI

Fig. 4: Illustrative cross-section (a) from the OG shown in
Fig. 3 to form a 2D OG (b) with free (white), occupied
(black), and unknown (gray) cells. (c) The CSQMI reward
is evaluated for a planar sensor at different positions over
this cross section to create a heat map (brighter colors
corresponding to increased reward). This reward surface is
non-smooth and sometimes flat due to occlusions and the
limited sensor range.

Although the distribution over the entire space is shown, the
CSQMI is only evaluated for sensor measurements generated
during execution of trajectories considered during planning.
Note that the evaluation of CSQMI also considers conditional
dependencies between sensor measurements that result in
a value less than or equal to the sum of the CSQMI of
individual measurements considered in isolation.

To obtain a rule for computing reduced resolution rep-
resentations of OGs for use in CSQMI calculation (not
planning), Nelson and Michael [5] employ the Principle
of Relevant Information (PRI) [22], a minimization over a
random variable X of (H(X) + �D(X||X0), where H is
a measure of entropy and D is a divergence measure. This
approach produces a probability distribution with reduced
entropy while minimizing the difference from the original
distribution. Using � = 1, they obtain a rule that maps a
set of cells to a single probability that is any of (0, 1, 1

2 )

based on the product of the odds ratios. Although initially
evaluated on 2D OGs, this approach readily extends to 3D
OGs as evident when compressing the map in Fig. 3 and
shown in Fig. 5. This rule is applied recursively such that the
cell dimension at reduction level n increases by a factor of
↵ = 2

n. To encourage similar behavior between compression
levels, we normalize the map prior, p, such that the expected
penetration distance of a ray into a row of unknown cells
remains constant on a reduced resolution OG. By equating
the expected penetration distance in the base and compressed

(a) n = 1

(b) n = 2

Fig. 5: The OG from Fig. 3 with resolution reduced (a) one
and (b) two times. Free cells are dark and occupied cells are
colored while unknown cells are not shown.

maps
1X

n=1

↵p↵n(1� p↵)
n
=

1X

n=1

pn(1� p)n (9)

a formula is obtained that relates the occupancy prior of the
compressed map, p↵ to the prior of the base map, p0,

p↵ =

↵p0
1� p0 + ↵p0

. (10)

D. Integrated Exploration Approach

To evaluate plans, two objectives are considered: 1) time-
efficient exploration, VT =

I
T , and 2) energy-efficient

exploration, VE =

I
E . Both objectives compute information

reward with respect to the total duration of a plan, T, or the
integral of power usage, Pe denoted by E.3 It will be shown
that these objectives produce nearly identical performance for
the operating conditions detailed in this paper as power usage
remains roughly constant. As the calculation of information
reward, I, is computationally expensive, we refer to the
heuristic proposed in earlier work [8] and compute the
mutual information at motion primitive endpoints on the
compressed map.

At each exploration update, the information reward and
expenditure cost are computed for a subset of plans in

3 The total energy consumption for the system is defined as

Pe =

4X

i=1

 
cq$

3
i +

rc2q
k2e

$4
i

!
+ Pa

where r is the motor internal resistance, ke the motor torque and voltage
constant, and Pa a lumped parasitic term. We defer to the works of Bangura
et al. [25] and Morbidi et al. [26] for more extensive discussion of quadrotor
power models.
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Fig. 6: Information gained (reduction in Shannon entropy) versus time and energy costs. (a) Energy- and time-efficient
objectives are roughly equivalent for the operational domain. (b) Evaluation of mutual information on reduced resolution
maps leads to improved exploration performance. Dotted lines indicate individual runs and solid lines represent mean values.

(a) (b)

Fig. 7: (a) Angled view of the Indian Tunnel skylight and (b) sensor measurements taken during exploration (shown in
white).

the graph given available computation time, typically on
the order of 10

5 plans per exploration cycle (e.g., 1Hz).
Each motion primitive evaluation consists of referencing pre-
computated traversal costs, collision-checking, as well as
computation of associated information gain. A trajectory is
selected according to the objectives noted above in order
to yield a maximally informative and efficient exploratory
motion plan.

III. RESULTS

a) Simulation design: The proposed approach was tested
with a simulated quadrotor exploring the Indian Tunnel
skylight environment. The simulation captures the power
model and rotor dynamics of the vehicle.

The quadrotor model parameters are reported in Table I.
Parameters of the motion primitive graph are detailed in
Table II and specify the range and discretization of each
value. The motion primitive state-space lattice specifies 3D
motions and has a depth of 4. The set of motion primitives
used to build the graph requires 33MB of space and is thus
large enough that the graph must be pre-computed but small
enough that it can be computed in under 10 minutes on a
desktop class processor. The approach applies generally to

systems with one or more ranging sensors. A time-of-flight
camera is simulated that produces a 24 ⇥ 38 (reduced to
6 ⇥ 9 = 54 beams for CSQMI calculation) depth-image
with a 43.6� ⇥ 34.6� field-of-view and 10m range. The
sensor is aligned with the x-axis with the longer dimension
of the field-of-view aligned vertically for more effective
scanning (yaw) behavior. The implementation of the CSQMI
computation is optimized but remains the most expensive
operation during planning.

The approach is evaluated by rate and quantity of of informa-
tion gain (reduction in Shannon entropy, (4)). versus energy
expended. These metrics are appropriate for planetary robots
that explore an environment given finite energy reserves
rather than complete exploration.

b) Results: Trials comparing objectives VT and VE are
shown in Fig. 6a. In all of the experiments, results are
shown for ten minutes of exploration that expend roughly
the capacity of a single 2250mAh battery. The choice of
primitives limits linear acceleration to 0.5m s

�2 to ensure
feasibility and sensing such that the control inputs are
dominated by gravity compensation. Power usage is constant,
making the choice of objective inconsequential. Thus, time
cost is an appropriate substitute for energy cost under typical



conditions barring sufficiently aggressive flight. In Fig. 6b
results are shown for reduced resolutions as shown in Fig. 5.
Performance benefits are observed (summarized in Table
III) primarily for n = 1 which performs consistently well
throughout the duration of the experimental trials. For n =

2, degradation in performance appears due to aggressive
reduction in the resolution of the OG signifying a trade-
off between the trajectory evaluation rate and fidelity. These
results are summarized in Table III. Figure 7 shows the
pit mesh and cloud of empty points after exploration and
highlights the extent of coverage for a typical experimental
trial.

IV. CONCLUSION

We have demonstrated an autonomous, end-to-end explo-
ration and mapping framework for unstructured cave and
pit environments that operates quickly and efficiently in
3D while avoiding hazards. Real-time motion planning is
achieved via a finite-horizon approach in the form of mul-
tiple state-space lattice graphs. A computationally tractable,
information-theoretic objective function based on the eval-
uation of CSQMI at each lattice state combined with com-
pression techniques enables the evaluation of thousands of
views per second. We demonstrate that this framework is
viable for real-time exploration and, given the presented op-
erating conditions, that the time-efficient and energy-efficient
approaches yield equivalent performance. The compression
strategy ensures real-time viability and enables computation-
ally tractable, real-time exploration.

TABLE I: System Parameters

m 0.507 kg ke 4.0 · 10�3 V s rad�1

ct 1.158 · 10�6 Nms2 rad�2 r 0.125 ⌦
cq 1.969 · 10�8 Nms2 rad�2 Pa 8.4 W

TABLE II: State-Space Lattice Parameterization

start end � start end �
x (m) 0 1 1  (rad) �⇡

2
⇡
2

⇡
4

y (m) -1 1 1 ||v|| (m/s) 0 0.5 0.25
z (m) -1 1 1 ||a||, ż, z̈,  ̇,  ̈ 0 0 -

TABLE III: Reduced Resolution Exploration Performance

CSQMI Rates (kHz) Information (kilo-bits)
n View Plan 20kJ 40kJ 60kJ
0 2.03 0.58 397 633 771
1 3.11 0.90 438 665 776

2 5.42 1.55 393 614 716
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