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Variable Resolution Occupancy Mapping using
Gaussian Mixture Models
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Abstract—Occupancy mapping is fundamental for active per-
ception systems to enable reasoning about known and unknown
regions of the environment. The majority of occupancy mapping
approaches enforce an a priori discretization on the environment,
resulting in a fixed resolution map that limits the expressiveness
of the representation. The proposed approach removes this a
priori discretization, learns continuous representations for the
evidence of occupied and free space to derive the probability of
occupancy, and enables occupancy grid maps to be generated at
arbitrary resolution. Efficient methods are also presented that
accurately evaluate the probability of occupancy in individual
cells and enable multi-resolution mapping and local occupancy
evaluation. The efficacy of the approach is demonstrated by
comparison to state-of-the-art discrete and continuous mapping
techniques in both 2D and 3D. The core contribution of this
work is a memory-efficient method for deriving occupancy that
is amenable to small or large corrections in pose without the
need to regenerate the entire map. The applications under
considerations are low-bandwidth scenarios (e.g. multi-robot
exploration) and operations in expansive environments where
storing an occupancy grid map of the entire environment would
be prohibitive.

Index Terms—Mapping, RGB-D Perception.

I. INTRODUCTION

OCCUPANCY mapping is often applied as a framework
for core capabilities of autonomous systems such as

localization, collision avoidance, exploration, environment rea-
soning, etc. Representing occupancy in a probabilistic manner
enables reasoning about the uncertainty in the occupancy
model that arises due to imperfect state estimation and noise
in sensor measurements. Appropriate accounting for this un-
certainty increases robustness and is critical where error in the
environmental model can result in catastrophic failure.

Although the world we seek to model is continuous, reason-
ing over continuous models is difficult due to the requisite in-
tegration over non-trivial spaces, which often necessitates nu-
merical evaluation. A commonly employed mitigation strategy
is the pre-emptive discretization of the environment, typically
through the imposition of a grid structure [1–6], which renders
evaluation of the model significantly less complex. However,
a priori discretization results in loss of information due to the
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Fig. 1: Gaussian mixture model occupancy mapping pipeline. (a) input pointcloud. (b) 850
component GMM with laser pointcloud overlaid. (c) The proposed approach performs
Monte-Carlo sampling of the GMM and raytraces through an occupancy grid map to the
sensor origin while updating the probability of occupancy of cells along the beam.

non-invertible mapping from measurements to discrete cells,
i.e. it is known that a cell contains a measurement, but it is
not known where in the cell it lies. Approaches exist that
mitigate against this ambiguity through increased resolution
made feasible by multiple levels of discretization that can be
matched to the observed data [2], but still requires imposition
of a minimum discretization level.

There has been a growing interest in direct modeling of
the continuous occupancy distribution, from which standard
occupancy grid maps can be sampled, or in some cases, the
models can be leveraged for direct evaluation [7, 8]. However,
direct modeling of occupancy scales with the volume of the
region being modeled, requiring models of increasing size or
capacity in order to maintain high fidelity. The scaling issues
of direct modeling approaches can be overcome through the
use of surface modeling which implicitly captures occupancy.
In this work, we propose to follow recent applications of
Gaussian Mixture Models (GMMs) as a compact represen-
tation of sensor observations [9–12]. Employing GMMs
in this manner implicitly captures the occupied surface and
free space information required to reconstruct a probabilistic
representation of occupancy, while avoiding the cost of direct
volumetric modeling.

While the continuous nature and shape of the Gaussian
distribution may appear to be ill-suited to modeling discontin-
uous surfaces of uniform occupancy, we note that in practice,
this does not prove to be a substantial issue. Firstly, the
support of the Gaussian distribution is effectively compact,
with < 0.3% of the probability mass lying outside the three
standard deviation ellipsoid, which can be leveraged to approx-
imate discontinuous boundaries to a high degree of accuracy.
Secondly, although the sensor observations are generated by
sampling from uniformly dense surfaces according to the
sensor sampling distribution, empirical results show a GMM
with a sufficient number of components can well model the
surface distribution.

By leveraging GMMs (Sections III-A and III-B) as a model
of observed surfaces, we build what we term as a mixture
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of Gaussian cones (Section III-C), which fully describes the
continuous distribution of free space evidence contained within
the measurement. In this manner, we determine the evidence
of free space approximately for arbitrary shapes in 2D (Sec-
tion III-C1) and polyhedra in 3D (Section III-C2). We utilize
a Bernoulli Distribution to model the opposing evidence for
occupied space encoded by the GMM and the evidence for free
space derived from the corresponding cones (Section III-C3).
We demonstrate the accuracy and efficiency of this approach
compared to state-of-the-art discrete and continuous methods
(Section IV) and present a study to determine the optimal
number of components in practice (Section IV-C).

II. RELATED WORKS

Occupancy grid mapping is most commonly used for mod-
eling occupancy, but suffers from fixed grid resolution, which
leads to high memory complexity - quadratic in 2D and cubic
in 3D, and an independence assumption between cells in the
grid. Variants have been proposed that seek to overcome these
limitations. OctoMap [2] reduces the impact of fixed resolution
through a memory efficient hierarchical structure, enabling the
use of significantly higher resolution. However, this technique
incurs discretization errors due to fixed resolution at the lowest
level. Recent work by Sun et al. proposes to address the
independence assumption in grid maps through a Gaussian
Markov Random Field by decomposing a grid model into sub-
grids with known inter- and intra sub-grid dependencies [13].
Similarly, Osman et al. propose to use ray potentials and
surface priors to update conditionally dependent occupancy
cells in a consistent manner [14].

Continuous and semi-continuous approaches have been pre-
sented to mitigate against discretization errors. The Normal
Distribution Transform Occupancy Map (NDT-OM) [4] builds
a 3D occupancy grid map where each occupied cell stores a
uniformly weighed Gaussian density. However, NDT mapping
suffers from large memory requirements due to the need
to retain the voxelized representation of the environment
and Srivastava [15] demonstrates that voxelization intro-
duces discretization at the edges of the cell. Gaussian Pro-
cess (GP) occupancy mapping techniques first introduced by
O’Callaghan and Ramos [1] learn a continuous representation
of the environment using GP regression. GP occupancy maps
(GPOMs), as first introduced, suffer from poor training and
test complexity, O(N3) and O(N2M), respectively where N
and M are the number of training points and testing points
for model learning and evaluation, respectively. Kim and
Kim [16] develop a more computationally tractable method
by dividing the training data into small subsets and apply-
ing a mixture of GPs and subsequently further improve the
efficiency through the application of sparse Gaussian pro-
cesses [17]; however, the training time remains too large for
real-time applications. Jadidi et al. [18] develop incremental
GPOM methods that efficiently learn separate models for
free and occupied space, which are combined to generate a
probability of occupancy. An efficient variant of the GPOMs
was introduced by Doherty et al. [8], in which Bayesian kernel
inference and sparse kernels in an octree data structure are

employed to reduce training complexity via recursive updates
and testing complexity through test data partitioning. The
proposed approach compares favorably to BGK-OM both in
terms of memory and accuracy as show in Section IV-B.
Hilbert Maps [7] have also been proposed as an efficient
method of learning continuous occupancy models by training
a classifier in a reproducing kernel Hilbert space. Evaluation
in 2D environments demonstrate the increased representational
capacity of the proposed approach when compared to Hilbert
maps (see Section IV-A).

Gaussian Mixture Models have been shown to provide a
high fidelity generative of model of point cloud data [10].
Furthermore, while GMMs have historically been slow to
train, Eckart et al. [10] demonstrated an efficient coarse-
to-fine expectation-maximization implementation that enables
conversion from dense depth data to a GMM at sensor rate
on a mobile platform. Recently, Marriott et al. [12] presented
an application of GMMs to surface modeling via a Gaussian
mixture regression formulation for plane extraction, which can
be considered as a constrained variant of the fitting procedure
employed in this work. Furthermore, GMMs have been shown
to be useful in other stages of the robotics pipeline. For ex-
ample, in prior work, the authors demonstrated the application
of GMMs for robust registration of depth observations [11].

III. METHODOLOGY

A. Gaussian Mixture Model as a Generative Observation
Model

We elect to model an observed point cloud, Z , as a sample
drawn from an underlying probabilistic mixture model, p(x).
We assume p(x) to be well-modeled by a J-component
Gaussian Mixture Model, G, which is defined as

G =

J∑
j=1

πjN (x|µj ,Σj) (1)

where the hyper-parameters θj = {πj ,µj ,Σj} are the
component-wise prior, mean, and covariance, respectively. The
point cloud Z is comprised of N points zi ∈ Z , where
zi ∈ Rn, for n ∈ {2, 3} in this work. Each zi is assumed to
be i.i.d according to G. The hyper-parameters are then learned
such that the GMM is the maximum-likelihood estimator of Z
via the Expectation-Maximization (EM) algorithm. EM is an
iterative procedure that optimizes a lower bound on the MLE.
For more information on the EM algorithm applied to GMMs
see [19, Chapter 9] and [10].

The GMM G encodes the spatial density of observed points.
Given the support size N and the GMM describing a series
of measurements, G = p(x) =

∑J
j=1 πjN (x|µj ,Σj), we can

compute the number of points observed in any volume V ,
through integrating p(x) over this volume. We leverage this
fact to interpret G as model of the evidence for occupancy in
any volume in space. The GMM encodes sensor noise implic-
itly within the surface model. As depth sensors observe sur-
faces, the resulting GMM will typically have near degenerate
dimension directed along the normal vector to the surface. The
variance of the data along this dimension, which is captured in
the component covariance, describes the sensor noise. As each
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component corresponds to an individual measurement and
each measurement is invariant to pose uncertainty, corrections
can be applied on a component-wise basis via the following
equations that transforms the density through a rotation matrix
R ∈ R3×3 and translation vector t ∈ R3.

µ′ = Rµ+ t Σ′ = RΣRT (2)

B. Free Space Modeling

While a GMM G models the observed space (both occupied
and max-range), it ignores the information contained in the
beams between the sensor and the end points. Free space
can be modeled explicitly by additionally learning a free
space GMM F , whose components lie along the beams
associated with a component of G. However, this approach
has two principle limitations: Firstly, each occupied point
corresponds to an infinite number of free space points lying
on the beam from the occupied point to the sensor location;
Secondly, the free space evidence resulting from an individual
point is constant along the entire beam between the sensor
location and the occupied point, making Gaussian decay an
inappropriate modeling choice. We can overcome both of these
limitations by acknowledging the implicit modeling of free
space embedded in the GMM G.

C. Mixtures of Gaussian Cones

Making use of the fact that the free space evidence is
entirely defined by the beam connecting the sensor location
and the observed points, we propose to derive the free space
model from the tuple {Gt, st}t=1,··· ,T , where st is the sensor
pose corresponding to the observation Zt on which the mixture
model Gt was trained. The free-space beams that connect the
sensor location to a given component, when clustered, form an
oblique cone, as shown in Fig. 2. The evidence of free space
at a given point x is the evidence of an occupied or max range
point lying beyond x along the ray originating at the sensor
location and passing through x. The evidence for free-space in
a region V , is given by the evidence of occupancy contained
within the truncated polygonal pyramid, with apex and shape
defined by the spherical polygon derived from the projection of
the volume V onto a sphere centered at the sensor location. We
utilize this fact to derive an analytic expression for the free-
space evidence in 2D. However, due to a non-trivial region
of integration, to the best of the authors’ knowledge, direct
extension of this approach to 3D is not possible (see Section VI
for more information). Instead, we utilize a fast Monte Carlo
ray tracing technique.

The free space evidence integral can be expressed as

Evidence(x) =

∫
V

p(x)dx (3)

The nature of the volume V makes parameterization in spher-
ical coordinates a natural choice. Before performing the coor-
dinate transformation, it is convenient to remove the effect of
the anisotropic data covariance, which is achieved by applying
the following isotropic mapping: xI = S

−1/2
k V T

k (x − µk),
where V kSkV

T
k = Σk is the singular-value decomposition

of the anisotropic covariance matrix.

-2
2

z 
(m

)

10
10

y (m)

0

x (m)

0
-10 -10

(a) (b)

(c) (d)

Fig. 2: Occupancy reconstruction pipeline. (a) The system takes as input a sensor
observation with occupied points (red), max-range points (blue) and a sensor location,
from which the the free space beams (blue lines) originate. (b) A GMM is fitted to
the occupied points (red) and maximum range points (blue). (c) The occupied space
evidence (NHV ) is then computed using Monte Carlo integration over the occupied space
components (red components) only, which amounts to resampling and binning in a voxel
grid. (d) The free space evidence (NMV ) is computed by evaluating the subset (orange
density) of Gaussian cone (blue density) passing through a given voxel V . This evaluation
is achieved using Monte Carlo raytracing or the presented analytic approximations. The
probability of occupancy is the reconstructed for a voxel V using Eq. (11).
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(b) Error in Eq. (9) for 10cm voxel.

Fig. 3: Absolute error in the free space approximation for 2D (a) and 3D (b). The error
was calculated as the difference between the Monte Carlo estimate and the analytic value
for the probability of occupancy due to a single Gaussian component observed from the
origin. In both cases, the peak absolute error is empirically found to be low.

A single Gaussian component in this new space is given by
p(xI) = 1

(2π)3/2
exp (− 1

2 (xI − pk)T (xI − pk)), where pk is
the sensor location corresponding to component k. Finally, we
apply a rotation Rk, such that the component mean lies along
a co-ordinate axis, i.e. in 2D, we rotate the mean onto the
x-axis, such that Rkpk =

[
pk,x 0

]>
.

1) 2D Occupancy Grids: In the 2D case, we reparameterize
Eq. (3) to polar coordinates and rotate the mean onto the x-axis

E(x) =
1

2π

∫
V

re
− 1

2

∥∥∥∥∥∥
r cos θ
r sin θ

−
px

0

∥∥∥∥∥∥
2

2drdθ

=
1

2π

∫
V

e−
1
2p

2
x sin2 θre−

1
2 (r−px cos θ)2drdθ

=
1

2π

∫
θ

e−
1
2p

2
x sin2 θ

∫ ∞
r′

re−
1
2 (r−px cos θ)2drdθ

=
1

2π

∫
θ

e−
1
2p

2
x sin2 θ

[
e−

1
2 (r
′−px cos θ)2+(

1− erf
(
r′−px cos θ√

2

))√
π
2 px cos θ

]
dθ

(4)

The final integral has no closed form solution in general.
However, we note that due to the phase offset between sine and
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cosine, the first term has negligible contribution except around
θ ≈ 0. In this case the term reduces to exp(−(1/2)(r′ −
px)2), which has value of 1 for r′ ≈ px. However, since the
mean px is typically very large (due to the isotropic transform
significantly stretching the along beam direction, see Fig. 2),
the contribution of this term to the integral is negligible. We
can apply the same logic to approximate the term inside the
error function as constant evaluated at θ = 0.

E(x)≈ 1
√
8π

∫
θ

e−
1
2p

2
x sin2 θ

(
1−erf

(
r′−px cos θ√

2

))
px cos θdθ

≈ 1
√
8π

(
1−erf

(
r′−px√

2

))∫
θ

e−
1
2p

2
x sin2 θpx cos θdθ

≈ 1

4

(
1−erf

(
r′−px√

2

))(
erf
(
px sin θ2√

2

)
−erf

(
px sin θ1√

2

))
(5)

Here, we determine θ1 and θ2 from angle centered on the
sensing location that bounds the transformed cell. Addition-
ally, the radial term r′ is given by the closest radial point,
which is a faithful approximation for cells outside of the 3-
sigma occupied ellipse. Fig. 3a shows the approximation error
for a range of values for r′ and px.

2) 3D Voxel Grid : Direct extension of the 2D approach
to 3D is not possible, see Section VI. However, noticing
that components are approximately planar (see Fig. 2b), the
problem can be converted to the integration of a bivariate
Gaussian over a convex polygonal domain. The domain of
integration is determined by the projection of the voxel of
interest to the plane defined by the eigenvector of the Gaussian
covariance corresponding to the the smallest eigenvalue. The
bivariate Gaussian is defined by the remaining two dimensions
of the 3D Gaussian and the isotropic transform outlined in
Section III-C is applied. As this is an affine transform, the
convexity of the projected polygon is preserved. This 2D inte-
gral has received some attention in the numerical integration
literature [20, 21], however, these approaches are designed to
provide significantly higher accuracy than is necessary for our
application. A less complex, albeit less accurate, strategy can
then be achieved through application of Green’s Theorem

1

2π

∫
P

e−
1
2 (x

2+y2)dxdy =
1√
8π

∮
∂P

e−
1
2x

2

erf(
y(x)
√
2

)dx (6)

The path of integration ∂P is defined piece-wise as the
line segments defining the edges of the polygon traversed
in counter clock-wise order. Unfortunately, the path integral
Eq. (6) has no-analytic solution. This is remedied by intro-
ducing the function e(x) = 1 − exp

(
− 2
πx(x+

√
π)
)
, from

which a piece-wise approximation of the error function is
constructed.

erf(x) ≈ ê(x) =

{
e(x) x ≥ 0

−e(−x) x < 0
(7)

This approximation has a maximum absolute error of 0.0140,
a maximum absolute relative error of 0.0166 and an average
absolute error of 0.0048, which is sufficiently accurate for our
application.

Each edge k of the NP edges in ∂P is defined by the line
y = mkx+ ck. The path integral Eq. (6) can be decomposed
into a sum of integrals along the edges

1√
8π

NP∑
k=1

∫ xk+1

xk

e−
1
2x

2

ê(mkx+ ck)dx (8)

The solution for each edge integral, Ik, is given by

π
√
2

em2
k−ck(2syck+

√
2π)

dk

√
dk

erf
(
mk(2syck+

√
2π)+sydkx

√
2πdk

)
−syerf(

x
√
2
)


where dk = 2m2

k + π and sy = sign(y(x)). Due to the piece-
wise definition of ê(x), it is necessary to evaluate Ik in a
piece-wise manner. If the sign of yk and yk+1 differ, then the
Ik must be evaluated at the x intercept (xz = − c

m ). In general,
the solution to Eq. (6) is given by

1√
8π

NP∑
k=1

(
Ik|xk+1

xz − Ik|xzxk
)

(9)

3) Monte Carlo Estimation: While the previous expression
is useful for computing the free-space evidence at a point,
a more efficient method for estimating occupancy over a
larger volume is to sample points from the occupancy model,
ray-trace through a voxel grid representation [22] to the
sensor origin to determine intersecting cells, and update the
probability of occupancy inside each cell.

D. Occupancy Modeling

As mentioned in Section III-A, it is possible to determine
the number of observed points in any volume by solving the
integral

NH
V = N

K∑
k=1

πk

∫
V

N (x|µk,Σk) (10)

Since this integral cannot be computed in closed form, we
evaluate Eq. (10) for G using Monte Carlo sampling on the
non-max-range components. The free space evidence NM

V

is then determined by performing ray casting using points
resampled from all components in G as described in Section
III-B. Alternatively, we can compute the free space evidence
using the result Eq. (5) in 2D or Eq. (9) in 3D. We model
the probability of occupancy as a Bernoulli distribution over
every volume V in space. Specifically, we have p(o|V ) ∼
θ(o)(1 − θ)(1−o), where o = {0, 1} is the binary occupancy
variable. The maximum a posteriori estimate of the distribu-
tion parameters is given by

θMAP =
NH
V +Np

NH
V +NM

V + 2Np
(11)

where Np is the contribution due to the prior and is user-
defined to control the sensitivity of the distribution to new
observations. The prior model forces all unobserved points to
have a probability of occupancy of 0.5.
The algorithm GenerateOccupancy3D provides pseudocode
for deriving occupancy from resampled points in an occupied
GMM. Line 1 samples N points from the GMM G. The list
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of cells between the sensor origin s and the endpoint pn are
obtained as CM , where m ∈ [1, . . . ,M ] in line 3. If m < M ,
the number of miss points, NM

V , is incremented as shown on
line 6. cM is the cell corresponding to the occupied point
pN , so the contents of the cell are updated by incrementing
NH
V shown on line 8. Removing lines 5 and 7-9 yields the

algorithm for updating the cells via a max-range GMM. In
this work, the getRayCells function is implemented via the
approach proposed by Amanatides et al. [22].
It is important to note that the voxelization presented here is
not the same as standard voxel grid mapping, since the voxel
grid is used as a convenient interpretation of the underlying,
continuous GMM. We could equivalently compute the occu-
pancy in an arbitrary discretization of the space. However,
this would likely preclude the use of the proposed efficient
Monte Carlo ray tracing strategy and would instead require
computation of the intersection between the discretized shapes
and the sampled beams.

GenerateOccupancy3D(s,G, N ) Pseudocode to update the
probability of occupancy of occupied GMM G given sensor
location s ∈ SE(3) and number of points to sample N

1: PN = samplePoints(G, N )
2: for pn ∈ PN do
3: CM = getRayCells(s, pn)
4: for cm ∈ CM do
5: if m != M then
6: updateMiss(cm) // increment NM

V for cell cm
7: else
8: updateHit(cm) // increment NH

V for cell cm
9: end if

10: end for
11: end for

IV. RESULTS

The GMM implementation used throughout this work is
derived from the scikit-learn1 toolkit and ported to C++ to
decrease the runtime. The runtimes are collected on a late
2013 15” Macbook Pro with 2.60GHz Intel Core i7-4960HQ
and 16GB RAM. All approaches are tested single-threaded.

A. 2D GMM Occupancy Modeling

The 2D occupancy model is tested on the Intel Research Lab
environment from the Robotics Data Set Repository [23]. The
Monte Carlo and Analytic Approximation GMM occupancy
reconstruction approaches are compared against standard oc-
cupancy grid mapping and the recently proposed Hilbert maps
[7]. Code provided by the authors is used to compare against
Hilbert Maps2 with the recommended parameter settings as in
[7].

The accuracy and robustness of the proposed approach
to sparsity in the observed data is shown in Fig. 4. For
10cm resolution, the grid size is well matched to the density
of the sensor and occupancy grid maps yield very strong

1http://scikit-learn.org/stable/modules/mixture.html
2https://bitbucket.org/LionelOtt/hilbert maps rss2015
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Fig. 4: Area under the ROC curve for 10cm and 1cm resolution occupancy grids. Raw
occupancy maps and both GMM variants show equivalent performance superior to that of
Hilbert maps. The strong performance of standard occupancy grids can be attributed to the
density of the data relative to the resolution. In the case of 1cm grids, this measurement
density is no longer sufficient demonstrating that the proposed approach is capable of
reconstructing resolutions beyond that of the sensor.

Fig. 5: Occupancy Grid maps generated at 1cm resolution. Both GMM methods
demonstrate the ability to generalize beyond the raw sensor measurement. The basic
occupancy grid map (bottom right) shows inadequacy of the sensor density for this
mapping resolution. The Hilbert Map generates an overly conservative estimate, resulting
in incorretly modeling free space as occupied.

performance, which is matched by that of the two variants
of the proposed approach. As the resolution is increased to
1cm, the sparsity in the data and the independence assumption
inherent in occupancy grids results in reduced performance.
Since the proposed analytic approach is less efficient for large
grid sizes, we evaluate only the Monte Carlo strategy. We
see comparable performance to the 10cm resolution grid for
up to 70% data sparsity, after which point the sparse data
combined with the high resolution results in regions with
little evidence. However, we note that at both resolutions, the
proposed approach outperforms Hilbert Maps, which has a
fixed intrinsic resolution determined by the kernel parameters
used to learn the classifier.

The performance of the proposed approaches is compared
qualitatively in Fig. 5. In the top row, the dense occupancy
grids demonstrate the ability for the proposed approaches to
reconstruct at high resolution. In the bottom left, the sparsity in
standard occupancy grid mapping can be clearly observed. In
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the bottom right, we see the continuous occupancy distribution
generated using Hilbert Maps. The magnified regions illustrate
the sparsity in occupancy mapping and the conservative nature
of Hilbert Maps, resulting in designation of the corridor as
occupied. For the two proposed approaches, we see some free
space evidence outside of the corner, which occurs due to
the infinite extent of the GMM. However, we note that the
occupied space is appropriately designated.

B. 3D GMM Occupancy Modeling

The GMM occupancy model is evaluated with two datasets:
a mine dataset (reconstruction shown in Fig. 6c) and the
Freiburg campus dataset (raw pointcloud shown in Fig. 7a).
For each pose and pointcloud, a free and occupied GMM are
computed to represent the environment. 106 points are sampled
from the distribution and raytraced to the sensor origin and
the probability of occupancy is updated for each 25 cm voxel
along the ray. To determine the accuracy of reconstruction,
the Area under ROC (AUROC) is computed while varying
the percentage of observations removed. The proposed ap-
proach is compared against the standard occupancy grid map
and Bayesian Generalized Kernel Inference for occupancy
map prediction [8] (BGK-OM) approaches in Fig. 6a, and
demonstrates superior results in terms of inferring probability
as the number of training points decreases. Timing results
shown in Fig. 6b demonstrate the superior performance of the
proposed approach. While the times reported in [8] are signif-
icantly lower, than what is reported here, and the discrepancy
can be accounted for by the following: 1. BGK-OM is highly
parallelized with 8 threads so for a fair comparison the multi-
threading is disabled; 2. the max range of the sensor in these
tests is higher (15 m) than what is reported in Doherty et al. [8]
(4 and 8 m); 3. the environment is larger (100m×100m×8m)
as compared to the largest environment reported in Doherty
et al. [8] (43.8m×18.2m×3.3m); 4. the maximum number
of points used per scan reported in is 7601 but the tests
in Fig. 6b contain between 15,000-20,000 points when 0%
of the observations are removed and after downsampling with
the voxel grid filter. The dense voxel filter resolution is left
unchanged from the default parameters (0.1 m) but when the
sensor observations are sparse and the environment is large,
few points can be removed. The priors are set to 0.5, block
size is set to 1, and the resolution is 0.25 in keeping with the
other approaches. The other parameters are unchanged.

The key advantages of the GMM occupancy model over
state-of-art occupancy mapping approaches like the occupancy

AUC Memory Usage (Bytes)
GMM Number of Components

0.8179 40,000 1000
0.8072 20,000 500
0.8055 10,000 250
0.7849 4,000 100

BGK Number of Points
0.7603 204,132 17,011
0.7182 113,664 9,472
0.6338 60,120 5,010
0.5845 37,140 3,095
0.5428 18,660 1,555

TABLE I: AUC for given memory usage of GMM occupancy model compared to the
performance of BGK inference occupancy maps. The GMM is better able to reconstruct
the occupancy information in the environment with 50× less data than the Bayesian
Generalized Kernel inference approach for occupancy mapping.
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Fig. 6: (a) The effect of data sparsity on the fidelity of the map is measured by
computing the area under curve for several models constructed by increasingly reducing
the percentage of observations removed from the original data. (b) provides timing
analysis for each method along with variance in the lighter shaded region. (c) illustrates
the reconstruction of the map after sampling from the GMM. 100-component GMMs
were used to generate these results.

(a) (b) (c)

Fig. 7: (a) Raw pointcloud from Freiburg campus dataset with coloring according to
localization along the z-axis (total is 447,528 points and approximately 5.12MB of data
assuming 32-bit floats). (b) Reconstruction of occupied regions with BGK inference
for occupancy maps using 9472 points (111 KB data storage requirement). The voxels
displayed are those with a probability of occupancy greater than or equal to 0.65. The
AUC is 0.72. (c) Reconstruction of GMM map using 1000 components (40 KB data
storage requirement). The AUC is 0.82.

(a) (b) (c) (d)

Fig. 8: (a) A pointcloud of a courtyard from the Freiburg campus dataset with (b) a
railing outlined in red. (c) The occupied points from the grid map derived by Monte
Carlo sampling a 200-component GMM and (d) 850-component GMM are shown after
applying a threshold using variance = 0.06. The AUC for (c) is 0.79 and the AUC for
(d) is 0.82. In both cases the railing is properly reconstructed.

grid map, Octomap, or BGK-OM is the ability to correct for
small or large changes in pose without the need to regenerate
the entire map via (2). BGK-OM requires significantly more
data storage to obtain the same level of accuracy as can
be seen in the results from the Freiburg Campus Dataset
in Table I. Because the standard occupancy grid map under
performs as compared to both the proposed and BGK-OM
approaches in Fig. 6, the memory requirements would be
larger to achieve the same AUC. Furthermore, the timing needs
for regenerating the entire map are prohibitive for real-time
applications. Individual voxels cannot be meaningfully rotated
and translated; however, individual components of a GMM are
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easily translated and rotated to correct for errors in pose [24].
The GMM infers the presence of occupied space in the

neighborhood of observed points. However, the inferred occu-
pied space may be unobservable from the sensor location due
to occlusions from other surfaces. As a result, the inferred
density may contribute erroneous free space evidence. For
example, Fig. 8a depicts a laser scan from the Freiburg campus
dataset that exhibits clutter and challenging surfaces to model
in the form of a railing outlined in Fig. 8b. The inferred, but
unobserved, portion of the wall contributes free space evidence
to the voxels containing the railing, resulting in the probability
of occupancy dropping for the railing voxels. To account for
such situations, we leverage the variance of the voxels to
determine the occupancy classification levels. The variance of
a voxel is simply the variance of a Bernoulli random variable

σ2 = p(xi)(1− p(xi)) (12)

The variance quantifies the uncertainty in the occupancy value
of the cell and introduces a dead-band region in which voxels
remain unclassified. The occupied/free thresholds are given
by 1

2 (1 ±
√

1− 4σ2). Appropriate selection of σ2 ∈ [0, 0.25]
enables a threshold to be applied depending on how con-
servative we wish to be for a given application. Fig. 8c
illustrates the occupied cells when a variance thresholding is
applied when reconstructing a GMM with 200 components.
The railing is well represented in the reconstruction and the
AUC is 0.79. Fig. 8d illustrates the same result with 850 GMM
components and an AUC of 0.82.

C. Component Selection

Selecting the right number of components to model a GMM
is an open area of research. A hierarchical, top-down strategy
is developed by Eckart et al. [10] that produces a GMM by
successively partitioning the data into J leaf nodes such that
each leaf is a Gaussian density and J � N , where N is
the number of points in the pointcloud. The downside of this
approach is that user-defined convergence criterion must be
set to determine when the point cloud has been sufficiently
segmented. Srivastava and Michael [9] propose a bottom-up
strategy that successively merges components until a knee-
point is achieved. In addition, information-theoretic criterion
such as the Bayesian Information Criterion (BIC) and Akaike
Information Criterion (AIC) have also been used to determine
the elbow-point where adding an additional component does
not significantly add information; however, the elbow-point
cannot always be unambiguously identified. The plots of BIC
and AIC for a pointcloud shown in Fig. 2a are shown in Fig. 9a
and Fig. 9b, respectively, for numbers of components between
1 and 200.

We propose another method to determine the number of
components to ensure a maximum resolution inspired by the
work of Isler et al. [25] that measures surface coverage by
discretizing the space into a voxel grid with very small cell
size and counting the number of rays that collide with a surface
in the voxel. For a given desired maximum resolution, the
number of components needed to achieve that resolution may
be determined by computing a GMM, resampling from the
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Fig. 9: (a) The BIC and (b) AIC are often used to determine the number of components
to represent a distribution. The proposed approach (c) ensures max resolution through
comparison to an occupancy grid map. (d) Timing results for the occupied and free space
GMMs as the number of components increases. A visualization of the 200-component
GMMs may be seen in Fig. 2b.

distribution a number of points equal to the support size,
and raytracing through an occupancy grid map (note: not
a Bernoulli grid). The AUC is computed by comparing the
resulting occupancy grid map with a ground truth occupancy
grid map whose values are determined by raytracing the
original point cloud. Figure 9c illustrates the AUC scores when
varying the number of components in the GMMs for free and
occupied points.

The intuition behind this approach is that as the number of
components in the model approaches the number of points in
the sensor observation, the resulting AUC score will approach
1. It will be 1 only when the number of components exactly
matches the number of points in the sensor observation. This
representation also gives a more intuitive understanding of
how selecting the number of components will affect the re-
construction. For example, when the desired cell size is 0.6m,
50 components may be sufficient, but when increasing the
resolution to 0.3m cell size, 200 components would be needed
to obtain similar AUC accuracy. To obtain good performance
a trade-off must occur between the time it takes to calculate
the GMM and the desired maximum resolution. Figure 9d
illustrates the time to compute a GMM as the number of
components increases.The times may be significantly reduced
by employing the hierarchical strategy of [10]. This is left as
future work discussed in the next section.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a continuous occupancy mapping
methodology that enables efficient storage of a high-fidelity
model of both observed occupied space and free space while
remaining amenable to local or global updates in pose.
Through Monte-Carlo sampling and ray-tracing, resolution
beyond that of the sensor can be achieved. Furthermore,
methods for accurately determining the free space evidence
for arbitrary (in 2D) and polyhedral (in 3D) regions were
presented. The fidelity of the approach was demonstrated both
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quanitatively and qualitatively against Hilbert Maps [7] in 2D
and Bayesian Generalized Kernel Inference based occupancy
maps [8] in 3D. The results show a substantial reduction
in complexity of the representation, while achieving supe-
rior modeling accuracy. Future work will focus on efficient
evaluation of the analytic approximate solutions, consideration
of non-voxel based representations and the adaptive variance
determination to enable better matching of the model to the
environmental resolution, and develop strategies to enable
faster calculation of GMMs.
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VI. APPENDIX

3D Voxel Grids - Angular Integration

Following a similar approach to the 2D case, we arrive at
an integral over the angular coordinates θ and φ. Applying the
standard transformation to spherical coordinates yields

p(r, θ, φ) =
1

(2π)3/2
e
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The volume integral can be specified in spherical coordi-
nates as

Evidence(x) =

∫
V

p(r, θ, φ)r2 sin θdrdθdφ (15)

Integrating out the radial dimension (from r′, the distance to
the closest point of interest) allows the angular distribution
to be specified in terms of the complementary error function
erfc(x). For brevity, we denote s(θ) = sin θ and c(θ) = cos θ.
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When considering the evidence for free space in a voxel, the
domain of integration for φ, θ is a spherical (or geodesic)
polygon defined by the shadow cast by V as viewed from
the sensor. However, it is difficult to integrate over this region
in closed form, which necessitates resorting to Monte Carlo
estimation or the polygon projection technique described in
Section III-C2.


